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11. The Bakerian Lecture. Observations on the Theory of the
Motion and Resistance of Fluids; with a Description of the
Construction of Experiments, in order to obtain some funda-
mental Principles. By the Rev. Samuel Vince, 4. M. F.R. §.

Read November 2%, 1794.

Howsver satisfactory the general principles of motion may
be, when applied to the action of bodies upon each other, in all
those circumstances which are usually included in that branch
of natural philosophy called MEcHANICS, yet the application of
the same principles in the investigation of the motions of
FLUIDS, and their actions dpon other bodiqs, is subject to great

uncertainty. That the different kinds of airs are constituted

of particles endued with repulsive powers, is manifest from their
expanﬁon when the force with which they are compressed is
removed. The particles being kept at a distance by their
mutual repulSion, it is easy to conceive that they may move

very freely amongst each other, and that this motion may take

place in all directions, each particle exerting its repulsive
power equally on all sides. Thus far we are acquainted with
the constitution of these fluids; but with what absolute degree
of facility the particles move, and how this may be affected

under different degrees of compression, are circumstances of-

which we are totally ignorant. In respect to those fluids
which are denominated liquids, we are still less acquainted
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M. ViNcE’s Observations on the Theory, &c. 2%

with their nature. If we suppose their particles to be in con-
tact, it is extremely difficult to conceive how they can move
amongst each other with such extreme facility, and produce
effects in directions opposite to the impressed force without
any sensible loss of motion. To account for this, the particles
are supposed to be perfectly smooth and spherical. If we
were to admit this supposition, it would yet remain to be
proved how this would solve all the phenomena, for it is by
no means self-evident that it would. If the particles be not in
contact, they must be kept at a distance by some repulsive
power. But it is manifest that these particles attract each
other, from the drops of all perfect liquids affecting to form
themselves into spheres. We must therefore admit in this
case both powers, and that where one power ends the other
begins, agreeable to Sir Isaac NEwToN’s * idea of what takes
place not only in respect to the constituent particles of bodies,
but to the bodies themselves. The incompressibility of li-
quids (for I know no decisive experiments which have proved
them to be compressible) seems most to favour the former sup-
position, unless we admit, in the latter hypothesis, that the re-
pulsive force is greater than any human power which can be
applied. The expansion of water by heat, and the possibility
of actually converting it into two permanently elastic fluids,
according to some late experiments, seem to prove that a re-
pulsive power exists between the particles; for it is hard to
conceive that heat can actually create any such new powers,
or that it can of itself produce any such effects. All these un-
certainties respecting the constitution of fluids must render the
conclusions deduced from any theory subject to considerable
* See his Optics, Que. 31,
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26 Mr. ViNcE’s. Observations on the Theory

errors, except that which is founded upon such experiments as
include in them the consequences of all those principles which
are liable to any degree of uncertainty.

A fluid being composed of an indefinite number of cor-
puscles, we must consider its action, either as the joint action
of all the corpuscles, estimated as so many distinct bodies, or
we must consider the action of the whole as a mass, or as one
body. In the former case, the motion of the particles being
subject to no regularity, or at least to none that can be disco-
vered by any experiments, it is impossible from this considera--
tion to compute the effects ; for no calculation of effects can be
applied when produced by causes which are subject to no law.
And in the latter case, the effects of the action of one body
upon another differ so much, in many respects, from what would
be its action as a solid body, that a computation of its effects
can by no means be deduced from the same principles. In
mechanics no equilibrium can take place between two bodies
of different weights, unless the lighter acts at some mechanical
advantage ; but in hydrostatics, a very small weight of fluid
may, without its acting at any mechanical advantage what-
ever, be made to balance a weight of any magnitude. In me-
chanics, bodies act only in the direction of gravity ; but the
property which fluids have of acting equally in all directions,
produces effects of such an extraordinary nature as to surpass
the power of investigation. The indefinitely small corpuscles
of which a fluid is composed, probably possess the same powers,
and would be subject to the same laws of motion, as bodies of
finite magnitude, could any two of them act upon each other
by contact; but this is a circumstance which certainly never
takes place in any of the aerial fluids, and probably not in any
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liquids. Under the circumstances, therefore, of an indefinite
number of bodies acting upon each other by repulsive powers,
or by absolute contact under the uncertainty of the friction
which may take place, and of what variation of effects may be
produced under different degrees of compression, it is no won-
der that our theory and experiments should be so often found
to disagree. |

Sir Isaac NEwToN seems to have been well aware of all
these difficulties, and therefore in his Princiria he has de-
duced his laws of resistance, and the principles upon which the
times of emptying vessels are founded, entirely from experi-
ment. He was too cautious to trust to theory alone, under all
the uncertainties to which he appears to have been sensible it
must be subject. He had, in a preceding part of that great
work, deduced the general principles of motion, and applied
them to the solution of problems which had never before been
attempted ; but when he came to treat of fluids, he saw it was
necessary to establish his principles upon experiments; prin-
ciples, not indeed mathematically true, like his general prin-
ciples of motion before delivered, but, under certain limita-
tions, sufliciently accurate for all practical purposes.

The principle to be established in order to determine the
time of emptying a vessel through an orifice at the bottom, is
the relation between the velocity of the fluid at the orifice and
the altitude of the fluid above it. Most writers upon this sub-
ject have considered the column of fluid over the orifice as the
expelling force, and from thence some have deduced the velo-~
city at the orifice to be that which a body would acquire in
falling down the whole depth of the fluid ; and others that ac-
quired in falling through balf the depth, without any regard
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28 Mr. Vixce’s Observations on the Theory

to the magnitude of the orifice ; whereas it is manifest from
experiment, that the velocity at the orifice, the depth of the
fluid being the same, depends upon the proportion which the
magnitude of the orifice bears to the magnitude of the bottom
of the vessel, supposing, for instance, the vessel to be a cylin-
der standing on its base ; and in all cases the velocity, ceteris
paribus, will depend upon the ratio between the magnitude of
the orifice and that of the surface of the fluid. Conclusions
thus contrary to matter of fact show, either that the principle
assumed is not true, or that the deductions from it are not
applicable to the present case. The most celebrated theories
upon this subject are those of D. BErNoviLL1 and M. p’ALEM~
BERT ; the former deduced his conclusions from t/he principle
of the conservatio virium vivarum, or as he calls it, the equali-
las inter descensum actualem ascensumque polentialem, where by
the descensus actualis he means the actual descent of the centre
of gravity, and by the ascensus potentialis he means the ascent
of the centre of gravity, if the fluid which flows out could have
its motion directed upwards ; and the Zatter from the principle
of the equilibrium of the fluid. This principle of M. p’ALEM-
BERT leads immediately to that assumed by D. BErRNovILLI,
and consequently they both deduce the same fluxional equa-
tion, the fluent of which expresses the relation between the
velocity of the fluid at the orifice, and the perpendicular alti-
tude of the fluid above it. How far the principles here as-
sumed can be applied in our reasoning upon fluids, can only be
determined by comparing the conclusions deduced from them
with experiments. ,

The fluxional equation above mentioned cannot in general
be integrated, and therefore the relation between the velocity
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of the fluid at the orifice and its depth cannot from thence be
determined in all cases. If the magnitude of the orifice be in-
definitely less than that of the surface of the fluid, the equation
gives the velocity of the efluent fluid to be equal to that which
a body would acquire by falling in vacuo through a space equal
to the depth of the fluid. But the velocity here determined is
not that at the orifice, but at a small distance from the orifice ;
for the fluid flowing to the orifice contracts the stream, and
the velocity being inversely as the area of the section, the ve-
locity continues to increase as long as the stream, by the ex-
pelling force of the fluid, keeps diminishing, and when the
stream ceases to be contracted by that force, at that section of
the stream called the vena contracta, the velocity is that which
a body would acquire in falling through a space equal to the
depth of the fluid. If, therefore AB ¢d EF (Tab. II. fig. 1.)
be the vessel, ¢d the orifice, ¢ m n d the form of the stream till
it comes to the vena contracta, then this investigation sup-
poses AB cmnd EF to be the form of the vessel, and m»
the orifice, the fluid flowing through ¢ m z d just as if the ves-
sel were so continued. But as the proposition is to find the
velocity of the fluid going out of the vessel, it may perhaps ap-
pear an arbitrary assumption to substitute the orifice m#n in-
stead of c¢d, when no such a quantity as mn appears in the
investigation. If, however, we grant that the expelling force
must act without any diminution until the fluid comes to m #,
it seems that from the principles here assumed we ought to
substitute m n instead of ¢ d, as otherwise we get the velocity
generated by the action of only a part of the force. The con-
clusion here deduced agrees very well with experiment; but
an application of the same principles to another case differs so



30 Mr. ViNcE’s Observations on the Theory

widely from matter of fact, as to render it very doubtful
how far the principles here applied can be admitted. And if
we were to grant the application of the principles here as-
sumed, so far as regards the determination of the velocity, yet
the time of emptying a vessel can by no means be deduced
from it.

In order to determine the time of emptying a vessel, we
must know both the area of the orifice ¢ d, and the velocity at
that orifice. Now the theory gives only the velocity at mz ;
and as it gives not the ratio of m n to ¢ d, the velocity at the
orifice cannot be deduced from thence, and therefore we can-
not find the time of emptying. No theory whatever has at-
tempted to investigate the ratio of mn to c¢d; it is well known
that that is only to be determined by an actual mensuration.
When the orifice is very small, Sir Isaac Newron found the
ratio to be that of 1 to v%; when the orifice is larger, the
ratio approaches nearer to that of equality. We cannot there-
fore, even in the most simple case, determine, by theory alone,
the time in which a vessel will empty itself.

If ABCD (fig. 2.) be a vessel filled with a fluid, and
a pipe mnrs be inserted at the bottom, mn being very
small in respect to B C, then, according to the theory of D.
Ber~ouiLLl, the fluid ought to flow out of the pipe at s with
the same velocity it would out of a vessel AL M D through
the orifice »s. Now in this latter case, the velocity, according
to his own principles, varies as the square root of L A, and
therefore it varies in the same ratio in the former case ; hence
if the length m r of the pipe bears but a very small proportion
to A B, the velocity with which the fluid flows out of the pipe
will be very nearly equal to the velocity with which it would
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flow through an orifice at the bottom equal to r s or m n, the
pipe being supposed to be cylindrical. To find how far this
conclusion agrees with experiment, I made a cylinder 12
inches deep, and at -the bottom I made a small eircular orifice,
whose area was about the 1goth part of the area of the bottom
of the cylinder: I also put a cylindrical pipe into the bottom,
whose internal diameter was exactly equal to that of the hole,
and length 1 inch. Hence, according to the theory, the velo-
city of the fluid out of the pipe ought to be to the velocity out
of the orifice as v713: vz, or as 26 : 25 nearly. But by ex-
periment, the quantity of fluid which run through the pipe in
12" (the vessel being kept full) was to the quantity which run
through the orifice in the same time, very nearly in the ratio
of 4 to g, and consequently that ratio expresses the ratio of the
velocities ; a consequence totally different from that which
the theoty gives. I then took a vessel of a different base, but
the same altitude, and altered the diameter of the orifice and
pipe, still keeping them equal, and made the pipe only half an
inch long ; in this case the velocities, by the theory, ought to
have been in the ratio of v1z,5 to ¥z, or as 49 to 48 nearly ;
whereas by experiment the ratio of the velocities came out
the same as before, that is, as 4 to g nearly. I then reduced
the pipe to the length of a quarter of an inch, and in that case
the velocity did not sensibly differ from that through the ori-
fice. Upon examining the stream, in conse;juence of this great
difference in the two cases, when the lengths of the pipes dif-
fered by so small a quantity, I found that in the latter case the
stream did not fill the pipe, as it did in the former case, but
that the fluid was contracte! as when it run through the
simple orifice. At what fength of pipe the stream will cease
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to fill it, is a circumstance to which no theory has ever beemn
applied, but the determination thereof must be a matter of ex-
periment entirely.

I next inserted pipes of different lengths, and found that
when the length of the pipe was equal to the depth of the
vessel, the velocity of the effluent fluid by theory was to that
by experiment as about 7 to 6; and by increasing the length
of the pipe, the ratio approached nearer to that of equality.
In long pipes, therefore, the difference between theory and ex-
periment is not greater than what might be expected from the
friction of the pipes, and other circumstances which may be
supposed to retard the velocity.

If the pipe be conical, increasing downwards, the velocity,
by theory, is still the same, and consequently the quantity run
out will be in proportion to the magnitude of »s. As long as
the expelling force can keep the tube full, this appears to be
the case ; but by i11cre§;sing the orifice rs, the pipe will, at a
certain magnitude, cease to be kept full ; at what time this
happens must depend entirely upon experiment. But if the
pipe decrease, having its orifice r s equal to that of a cylindri-
cal pipe of the same length, the velocity through the former
appears, from the experiment I made, to be greater than
through the latter in the ratio of 14 to 11.

If the pipe m r (fig. g.) be inserted horizontally into the
side of a vessel, the velocity at the orifice 7s, by theory, is
always in proportion to the square root of the altitude C D,
the orifice being still supposed to be very small compared with
the bottom of the vessel. By trying the experiment with
pipes of different lengths and of the same diameter, beginning
with the shortest and increasing them, it appears that the
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velocity first increases and then decreases; and this is a cir-
cumstance which has been before observed. If 7s be greater
than Cm, the quantity of fluid which* flows out in a given
time (the vessel being kept full) appears to be increased in
proportion to the increase of s, as long as the expelling force
is able to keep the pipe full ; but at what magnitude of s this
effect ceases must be determined by experiment. If rs be less
than Cm, the quantity which flows out is greater than if the
pipe were cylindrical, and of the same diameter as rs.

The velocities of fluids spouting upwards through an orifice
or pipe has not been considered by BErRNovILLI ; but the fol-
lowing experiments will show the effects in this case. Let
ABCDEF (Tab. ]Il fig. 4.) be a vessel filled with a fluid,
r an o}iﬁce, z, y, %, three pipes each an inch long, having
their tops on an horizontal line with the orifice; z is cylin~
drical, of the same diameter as that of the orifice; y is conical,
increasing upwards, of the same diameter at the bottom as the

“orifice ; z decreases upwards, of the same diameter at the top
as the orifice. In 12", the quantities which run out through
the orifice and pipes «, y, 2, (the vessel being kept full) were
found to be in the ratio of 7, 9.4, 11.2 and 10.7. Hence the
ratio of the velocities through the orifice and pipe z appears to
be very nearly in thé ratio of g to 4, agreeable to what was
found to take place for an orifice and short pipe at the bottom,
The quantity which run out of the pipe y increased by in-
creasing the diameter at the top, in proportion to that area as
nearly as could be ascertained, as long as the expelling force
could keep it full ; and a greater quantity run out of the pipe
%z than through the orifice. All this is agreeable to what was
found to take place under similar circumstances when the
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orifice and pipes were inserted at the bottom. So far there-
fore as the theory can be applied when the fluid descends per-
pendicularly, it appears to be applicable also to the case when
it spouts upwards.

At the bottom of the vessel A B C D (Tab.IL fig. 5.) hav-
ing an orifice 7 s, I inserted a pipe axy zw v conical at the
top and cylindrical downwards from it, having the diameter of
the cylindrical part equal to that of the orifice, and directly
under it. I then stopped the orifice s » within, and filled the
vessel, and expected, that as there was now no pipe imme-
diately connected with the orifice, the fluid would form the
vena contracta as if there was no pipe, and that the velocity at
the orifice would be the same as through a simple orifice ;
whereas I found the velocity to be greater, very nearly in the
ratio of vz to 1, the length of the pipe being equal to the
depth of the cylinder. It appears therefore to flow out with
about the same velocity as if the pipe had been continued to
the orifice. The fluid therefore must have flowed from the
orifice in a cylindriéal form, for the pipe was observed to be
filled. I see no cause which could prevent the vena contracia
from being formed. I then stopped the pipe at the bottom y =,
and filled the vessel and pipe, and found the circumstances to
be exactly the same.

In order to determine whether there was any pressure of the
fluid against the sides of the pipes as it passed through in all
their different situations, I pierced some small holes in them
at different parts. In the cylindrical pipes, and those in the
form of increasing cones, the fluid passed by the holes without
being projected out, or without having the least tendency to
issue through them; but in the decreasing cones the fluid
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spouted out at the holes. In the former cases therefore there
was no pressure against the sides of the pipes, but in the latter
case there was.

In respect to the motion of the fluid through any of the
pipes, I found no difference whether I stopped the pipe at the
end of the tube which enters into the vessel, in which case
the motion began when the tubes were empty, or whether at
the other end, in which case they were full at the commence-
ment of the motion. That the fluid should flow into the top
of the pipe faster than it would through an orifice, may pro-
bably, in part at least, be owing to the adhesion of the fluid to
the pipe, and be thus explained. Although the horizontal mo-
tion of the fluid towards the orifice accelerates the velocity
after it escapes from the vessel by contracting the stream, yet
it must diminish the velocity at the orifice; that is, if the same
perpendicular motion were to take place without the horizon-
tal motion, the fluid would flow out faster; for as any motion
in a fluid is 1mmed1ately communicated in every direction, the
horizontal motion will produce a motion upwards, and in some
degree obstruct the descent of the fluid. If therefore this ho-
rizontal motion could be taken away, or any how diminished,
the fluid would flow out with a greater velocity. Now if a pipe
be fixed, the fluid at the bottom of the vessel flowing towards
the orifice will, by its adherence to the vessel, continue to ad-
here to the sides of the pipe. as soon as it arrives there, and
by this means almost all the horizontal motion will be de-
stroyed, and converted into a perpendicular motion, for the
horizontal motion arises principally from the fluid which flows
from and very near to-the bottom, where the whole motion is
very nearly in that direction. This motion therefore being
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thus nearly destroyed, the fluid will be less interrupted at the
orifice, and consequently will flow out with a greater velocity.
But why the velocity should also be increased either by in-
creasing the length of the pipe, or making it an increasing
cone, under certain limitations, is a circumstance which, I
confess, I can give no satisfactory reason for.

The abovementioned experiments were made principally
‘with a view to ascertain how far the theory of the motion of
fluids can be applied ; and the inquiry has led to several cir-
cumstances which, I believe, have not been observed before.
That the theory is not applicable in all cases is manifest ; but
that it brings out conclusions in many instances which agree
very well with experiment is undoubtedly true. This tends
to show, either that the common principles of motion cannot
be applied to fluids, and that the agreement is accidental ; or
that under certain circumstances and restrictions the applica-
tion is just. Which of these is the case is not, perhaps, easy
for the mind to satisfy itself about. Nothing however which
is here said is done with any view to detract from the merit
of these celebrated authors. They have manifested uncommon
penetration, and carried their inquiries upon the subject to an
extent, that nothing further can be hoped for or expected ;
and if they had done nothing else in science, this alone would
have ranked them amongst the very first mathematicians.
The fault has been non artificis sed artis.

Mr. MacLAURIN, in his Treatise on Fluxions, has given a
most admirable illustration of the theory of Sir Isaac NEwTON.
It is there a very principal inquiry to determine the ratio of the
force which generates the velocity of the descending surface
of the fluid to the force of gravity. Now according to that
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theory, the pressure on the bottom of the vessel is wholly
taken off at the instant of time at which the water begins to
flow ; and as this conclusion cannot be admitted, we may from
hence learn, says the author, that this theory is not to be con-
sidered as perfectly exact. It appears therefore to be an im-
portant point to determine, what is the pressure of the fluid
upon the bottom of a vessel compared with its whole weight at
the time the fluid is running out. This may be determined to
a great degree of accuracy by experiments constructed in the
following manner.
Let ABCD (Tab.IIlL fig. 6.) be a pair of scales, and O
_the fulcrum ; at the end of the arm C suspend a cylinder E,
having an orifice r 5, immediately under which place a weight
w, so that the upper surface may be in the vena contracta, or at
so small a distance below it that gravity can have produced
no sensible effect upon the effluent fluid. Stop the orifice r s,
and fill the cylinder with a fluid, and balance it by a weight W
in the other scale. Then open the orifice, and the fluid will run
out and strike w, and then be caught in the scale D. Now when
the orifice is opened and the fluid flows out, the pressure upon
the bottom of the cylinder is diminished, part of the fluid now
*not being supported, notwithstanding which the equilibrium is
still continued ; which shows that the action of the fluid against
w is exactly equal to the loss of weight in the cylinder by the
motion of the fluid through the orifice. In order therefore to
find the diminution of the weight upon the bottom of the cy-
linder, we have only to find a weight equivalent to the mo-
mentum of the fluid against w.
Let AB (fig.7.) be a lever flat on the upper side, sus-
pended by an horizontal axis C D; L a scale hanging from:
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it, which is to be balanced by a weight W ; E is the cylinder
suspended to something immoveable at M, having its orifice
r s as far distant from A B as before it was from the weight in
the scale; and let the orifice and scale be equidistant from C D.
Stop the orifice, and fill the cylinder ; and upon opening the
orifice, let one person, by means of a cock at » upon a pipe
which goes into a reservoir y %, keep the fluid in the cylinder
exactly at the same altitude, and another put such a weight w
into the scale L as shall keep A B exactly in the same position ;
then the weight w is equivalent to the momentum of the fluid
against A B, together with the momentum of the fluid enter-
ing the top of the cylinder through the pipe. To determine
what weight is equivalent to this latter momentum, take away
the cylinder E and weight w, and bring A B up to the pipe,
and let the fluid act upon it, and find what weight (v) put into
the scale will now keep A B horizontal, and this weight (v)
will be equivalent to the momentum of the fluid flowing into
the cylinder ; hence w — v is a weight equivalent to the mo-
mentum of the fluid issuing out of the cylinder at the vena
contracta, and consequently equivalent to the diminution of
the pressure upon the bottom after the opening of the orifice.
In order to keep the fluid accurately at the same altitude, I.
should propose to have a floating gage v (fig. 8.) with a wire
standing perpendicularly upon it, and entering a cylinder w
attached to the side of the vessel, and of a bore just large enough
to give it a free motion ; then the cock must be opened and
adjusted to give it such an aperture as will keep the top of the
wire on a level with the top of the cylinder.

Or we may find the diminution of the pressure upon the
bottom on opening the orifice in this manner. In fig. 6, take
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away the scale D and balance the cylinder when filled, and
let the end C of the beam be made flat at the point from which
the vessel is suspended. Then open the orifice of the vessel,
having the same provision as before to keep it filled to the
same altitude, and place such a weight at C as shall preserve
the equilibrium during the time the fluid is in motion, and this
weight is equivalent to w in 'the former case. This method is
the most simple of the two; but the other includes a cir-
cumstance of some consequence, that is, that the momentum
of the effluent fluid is exactly equivalent to the weight which
the vessel loses. Having thus examined all the circumstances
which I proposed respecting the emptying of vessels, I proceed
next to the consideration of the doctrine of the resistance of
bodies moving in fluids.

When a body moves in a fluid, each particle, in theory, is
supposed to act upon it undisturbed by the rest, or the fluid is
conceived to act as if each particle, after the stroke, were anni-
hilated, in which case the following particles would exert their
force uninterruptedly. This supposition is very far from be-
ing true in fact, and accordingly we find very little agreement
between theory and experiment. To experiments therefore
we must have recourse for any thing satisfactory upon this
subject. I therefore constructed the machine which is here de-
scribed, whereby both the absolute quantity of resistance in
all cases may be very accurately determined, and the law of
its variation under different degrees of velocity.

A B, CD (Tab.IV. fig.9.) are two cross pieces of wood
firmly connected together, with screws at each end, so that it
may be fixed upon any plane; EG F is a frame fixed upon
A B; mn a small cylindrical well polished iron axis, having
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the lower end made conical, and an hollow conical piece to
receive it, the upper end passing through G in a polished nut
of iron just big enough to give it a free motion ; on the top of
this axis there are fixed four arms a, b, ¢, d, having each a
plane b, g, f, e, whlch may be either of pasteboard or tin, and
are thus fixed on. A wire has one end made very flat to which
the plane is fixed, and the other end is left round and passes
‘under two small staples made of wire, fixed into the arm so
tight that you can but just turn it, so that if you fix the plane
in any position it will remain there without any hazard of
changing it. Two fine silk lines are wound together round
the axis, one leaving the axis on one side and the other on the
opposite side, and each, passing over a pulley, is connected to
a scale; by this means the lines when drawn by weights put
into the scales will give the axis a rotatory motion, and will act
in opposite directions, and therefore if equal weights be put
into the scales they will destroy each other’s effects, so far as
regard the position of the axis, so that neither the friction at
the bottom nor at the nut at the top will be at all affected by
whatever additional weights may be thus added. In respect
to any additional friction at the pullies by the increase of
weight, that may be diminished so as to become insensible,
by increasing the radius of the pullies, and makmg the ends
of their axes conical and letting them turn in a conical orifice,
so that they may rest just at their points. If we allow the
friction at the axis to be one-fifth of the weight added, which
is certainly a great allowance for such an axis well polished, and
the radius of the pulley be to the radius of that conical part
of the axis where it rests as one hundred to one, then the ef-
fect of the friction would be only the five hundredth part of
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the whole weight; and even this might be diminished one
hundred times more by using friction wheels; but this is a
degree of accuracy which, I think, can never be required: We
might also diminish the friction at the nut, if required, by let-
ting the axis on those two sides towards which the lines act
rest between two friction wheels. If the arms should be very
long, it may be necessary to fix an upright piece upon K, and
connect the extremity of the sails to the top thereof by a string
‘or wire. When this machine is applied to find the resistance of
water, the axis m»n must be produced up above K, and the
string applied to that part; the machine must be immersed
in a large reservoir of water, leaving the part of the axis to
which the string is applied above the surface. Before we pro-
ceed to the application, we must investigate a point called the
centre of resistance.

Def. Ifa plane body revolve in a resisting medium about an
“axis by means of a weight acting therefrom, that point into
which if the whole plane were collected it would suffer. the
same resistance, I call the centre of resistance.

Let a be the area of the plane, and & the fluxion of the area
at any variable distance x from the centre of the axis, and d
the distance of the centre of resistance from that of the axis.
Now the effect of the resistance of 4 to oppose the weight is,
from the property of the lever, as the resistance multiplied
into its distance from the axis, or as x4 ;. but the resistance is
supposed to vary as the square of the velocity (which is
found by experiment to be true under certain limitations), or
as the square (2°) of its distance from the axis; hence the
effect of the resistance of 4 to oppose the weight is as ra;
therefore the whole effect is as the fluent of 2°4. For the
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same reason the effect of the resistance of the whole plane &
at the distance d is as d’a; hence d°a =flu. 2° 4, consequently

flu, 23 ¢
— 3 .
d=>/222

If the plane be a parallelogram, two of whose sides
are parallel to the arms, and m and # the least and great-
est distances of the other two sides from the axis, then

d =23, Ag— n+m xn—l—m

Now to find the resistance of the planes striking the fluid
perpendicularly, first set them parallel to the horizon, so that
they may move edge-ways, or in their own plane, and let two
equal weights be put, one into each scale, such as to give the
arms an uniform velocity, and then these weights together (w)
will be just equivalent to the friction of the axis and the re-
sistance of the arms. Then place the planes perpendicular to.
the horizon by a plumb-line, and put in two more equal
weights, one into each scale, making together W, so as to give
the planes the same uniform velocity as before. Then, from
what has been already observed, there is no additional friction,
and therefore this weight W must be equivalent to the resist-
ance of the planes. But this equivalent weight W acts only
at the distance of the radius 7 of the axis from the centre of
motion, whereas the resistance is to be considered as acting at
the distance d of the centre of resistance from the centre of

motion ; hence d : z:: W : -d—x W the weight acting at the

distance d, which is equivalent to the resistance acting at the
same distance, and consequently it must be equal to the abso-
lute resistance against all the planes. And to find the velocity,
let C feet be the circumference described by the centre of
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Tesistance, and let the sails make one revolution in ¢ seconds ;
then the velocity will be - feet in a second.

To find the resistance when the fluid strikes the planes at
any angle, set them to that angle, and find the resistance in
the very same manner as before. But here we must set two of
the opposite planes inclined one way and two the other, so
that the fluid may strike the two former on their upper sides,
and the two latter on their under sides, but both at the same
angle. This caution is necessary in order to prevent any al-
teration in the pressure, and consequently in the friction upon
the axis in the direction thereof; for the fluid striking the
planes obliquely, part-of the force will be employed in resist-
ing the motion, and part will act perpendicular thereto, or in
‘the direction -of the axis, and this latter effect will manifestly
be destroyed by the above disposition of the planes, because
this force will act upwards against two of the planes, and down-
wards against the other two, and being equal, they will de-
stroy -each other’s effects. The planes may be set to any angle
thus : Take a small quadrant divided into degrees; let mn
(Tab. IV. fig. 10) be the outward inclined edge of the plane ;
suspend a plumb-line A B so as just to touch it at #, and at n
apply the centre of the quadrant, and let the radius passing
through go° coincide with AB, and turn the plane till #nm
coincides with that degree at which you would have the plane
strike the fluid, and the plane stands right for that angle.

To find the resistance of a solid, we must have two such
solids equal to each other, and put on at the opposite ends of
two of the arms, for with one only its centrifugal force will in-
crease the friction against the nut, whéreas with two opposite
to each other this effect will be destroyed. We must also get

Ge
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two thin pieces of lead with the edges feathered off, and of the
‘same weight with the two solids. These must first be put upon
the opposite arms, and a weight w found as before. Then the
leads are to be taken off; and the solids put on in their place,
with that side to go foremost whose resistance is required, and
then find W as in the case of the planes ; and the absolute re-
sistance will be < x W upon one of the solids. |

By this machine we may find the absolute resistance upon
the planes in a direction perpendicular to that of their motion.
For let the lower end of the axis, instead of resting upon the
base of the frame, stand upon one end of an horizontal lever,
like that in figure the seventh, and let it be balanced by a
weight in a scale hanging at the same distance on the other
side of the fulcrum, when the sails have acquired an uniform
motion, with the planes horizontal, or when moving edge-ways.
Then turn the planes to any angle, and add equal weights to
the scales R and T, until the planes have acquired the same
uniform velocity as before, and put a weight P into the scale at
the other end of the lever, which shall now just balance it, and
P will be the absolute resistance of the fluid in a direction per-
pendicular to the motion of the planes.

The law of resistance, when the velocity varies, may be thus
found. Let w, as before, be the sum of the two equal weights
which will give the planes an uniform horizontal motion when
they move edge-ways. Then set them perpendicular to the ho-
rizon, and let W' be the sum of the two equal weights, put one
intoeach scale, in order to give the sails the same uniform ve-
locity. Take out these two equal weights, and putin two other
equal weights, together equal to Q, such as shall give the planes
an uniform velocity double to that before given; then the
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resistances with these two velocities of 1: 2 will be as W : Q.
If R be the sum of the two equal weights put into the scales to
give an uniform velocity three times as great as that of the first;
then with velocities as 1 : g the resistances will be as W: R;
and so on. This method was proposed by Mr. Rosis, in order
to determine the law of resistance in terms of the velocity. -If
the planes be set at any angle, we can by this means get, in
terms of the velocity, the.law of resistance not only in the di-
rection of the motion of the planes, but also in a direction per-
pendicular to that of their motion. An account of all the ex-
periments which can be made by this machine, some of which
I believe have never yet been attempted, I shall lay before the
Royal Society at a future opportunity.



